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STUDIES IN STATISTICAL SIGNAL PROCESSING

FINAL TECHNICAL REPORT

Professor Thomas Kailath V- 0
0 -

Information Systems Laboratory H H -

Electrical Engineering Department

STANFORD UNIVERSITY, Stanford, CA-94305,

This is the final report on Contract AFOSR-83-0228, which funded our research on

statistical signal processing for a period of three years, between July 1, 1983 and June

30, 1986. Section II provides a description of work done in the period 1983-1985 and

Section III describes recent results, obtained in 1985-1986.

I. Introduction

The primary objective of our research is to develop efficient and numerically

stable algorithms for nonstationary signal processing problems by understanding and

exploiting special structures, both deterministic and stochastic, in the problems. We

also strive to establish and broaden links with related disciplines, such as cascade filter

synthesis, scattering theory, numerical linear algebra, and mathematical operator theory

for the purpose of cross fertilization of ideas and techniques. These explorations have

led to new results both in estimation theory and in these other fields, e.g., to new

orthogonal cascade digital filter structures, new algorithms for triangular and QR

87 2 27 048
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"-' factorization of structured matrices and new techniques for stability testing.

For several years, the guiding principle in these studies has been the concept of

(Toeplitz-oriented) displacement structure (Kailath, Kung and Morf, (1979)), which

generalized and subsumed our earlier work on fast (Chandrasekhar) control and

estimation algorithms for state-space models (Morf, Sidhu and Kailath, (1974)).

Several authors have since picked up these ideas in a number of fields. A notable

such work is a recent book by Heinig and K. Rost of East Germany, entitled

*Algebraic Methods for Toeplitz-Like Matrices and Operators.", A contribution of

this book is the introduction of a number of different displacement rank concepts for

not only Toepiitz-like operators but also Hankel-like, Vandermonde and Hilbert

operators. Somewhat contemporaneously, in the Ph.D. research of H. Lev-Ari (parts

of which were summarized in our AFOSR proposal submitted March 1983), we

introduced a generating function characterization that also lends itself to generalization

to a large class of structured matrices. Moreover, as we shall briefly describe below,

this approach introduces a natural geometric significance to the theory, which allows a

number of other interesting developments, e.g., studies of various problems in system

theory, such as minimal realization, Pad6 approximation, control design, and a variety

of root distribution (stability) problems for polynomials. Also, connections of the

generating function approach to the theory of inverse scattering were clarified during -

this research, yielding useful generalizations and a unified framework for the derivation

of algorithmic alternatives for the solution of the above-mentioned problems.

In particular, the topic of root distribution problems for polynomials has led our

enquiries in a somewhat different direction. We started with some recent results of Y.
or
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Bistritz (Proc. IEEE, September 1984), in which he obtains several new tests for the

root distribution of polynomials with respect to the unit circle that needed only half the

number of multiplications (and the same number of additions) as the well known

Schur-Cohn (or equivalently the Jury-Marden table) test (Jury, (1964)). Now

estimation theorists have long known that the Schur-Cohn test is essentially a reverse

(degree-reducing) form of the fast Levinson algorithm for solving Toeplitz linear

equations. It is therefore reasonable to expect that similar reductions in computtional

complexity could also be obtained for the Levinson algorithm itself, and this

possibility has now been explored in some detail. In particular, we have developed

three classes of reduced complexity Levinson-type algorithms and have demonstrated

the relationship between them (Bistritz, Lev-Ari and Kailath, (1986)). Moreover, we

have shown that these algorithms are essentially the only ones providing such

complexity reduction. An interesting fact is that the saving is achieved by using

three-term (rather than two-term) recursions and propagating them in an
p

Impedance/Admittance domain rather than the conventional scattering domain. Our

results apply both to Toeplitz and to close to Toeplitz systems. Moreover they provide

a general method for reducing computational requirements in various recursive

algorithms, e.g. adaptive least-square lattice algorithms. Bistritz is a postdoctoral

scholar at Stanford, and these results and several related ones were developed with

him.

The QR factorization of a matrix A is closely connected with the triangular

factorization of A*A. Recently we have shown that the displacement rank of a

product of two matrices does not exceed the sum of the displacement ranks of tihe

individual matrices. This result made it possible to develop a fast algorithm for QR

.- ..-... .-..-...-. * -. -.. ,, .-,.-'.-... .. : ... .. ,:.;, ,.. --.-..- -.- - . -. -- -. . "--- -: - - -- "
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factorization of matrices with a displacement structure, and in particular for Toeplitz

matrices (Chun, Kailath and Lev-Ari, (1986)).

is

5.
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11. Exploiting Generalized Displacement Structure

We originally started (in the late seventies) with the following definition. A

symmetric matrix R has a displacement structure if the difference

IR := R - ZRZ" , Z = [Ij1,"j=O

has low rank. Note that Z is the lower shift matrix with ones on the first

subdiagonal and zeros everywhere else. This definition was motivated by the fact that

for both Toeplitz matrices and for inverses of Toeplitz matrices the displacement rank

(i.e., the rank of IR) is 2. We have shown in previous work (largely supported by

AFOSR) that the displacement concept was a key tool for developing fast algorithms

of many kinds, including factorization and inversion of Toeplitz and near-Toeplitz

matrices, and to fast (generalized Levinson and Schur) algorithms for solving linear

systems with such coefficient matrices. Not surprisingly, these results led naturally to

cascade orthogonal structures for the prediction of nonstationary processes (Lev-Ari

and Kailath, (1984)). We have also found that the same concept is tightly connected

to the more general problem of cascade filter synthesis in network theory and digital

filtering as well as to a variety of inverse scattering problems (some references are Rao

and Kailath, (1984, 1985), Bruckstein and Kailath (1986)).

Recently we have extended the concept of displacement structure to a very broad

family of structured matrices, including Hankel matrices and their inverses, sums of

Tocplitz and llankel matrices and several others (Lev-Ai and Kailath, (1986)). The

generalized displacement of a matrix R, is defined as

N
VdR I dkZ'R(Z*) . (1a)

k,/=0

%I
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where the asterisk (*) denotes Hermitian transpose (complex conjugate for scalars).

This is characterized by a (Hermitian) displacement matrix Jd,

Jd := {dkj; 0 < k,J < N} (Ib)

The previous notion of displacement corresponds to the particular displacement matrix

Jd = :=JT

while the displacement notion used by Heinig and Rost (1984) for Hankel matrices,

corresponds to the displacement matrix S,

Jd =  ]:=JR

We have shown that efficient triangular factorization of a Hermitian matrix R can be

formulated for all displacement matrices whose inertia is (1,1). This means that Jd

must have the form

Jd=A (2)

where A is any matrix with two columns of arbitrary lengths.

The concept of displacement structure and its properties are more conveniently

described in terms of generating finctions. The generating function of a matrix R is

a power series in two complex variables, viz.,

R(z,w) z=[ z z2 ... JR[1 w w 2 ... 1°  (3)

The displacement VdR of a matrix has the generating function d(z,w)R(z,w), where

I(z,it) is the generating function of the Hermitian matrix Jd, viz.,

I::
* ~*..-. - .. U

5
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N
d(z,w) = F dzk(w*)l (4)

kj--O

Thus the generating function of a Hermitian matrix with a displacement structure has

the form

R(z,w) = G(z) J G*(w) (5)
d(z,w)

where J is any constant nonsingular Hermitian matrix. The triple {d(z,w),G(z),J} is

called a generator of R(z,w). ,

We have shown (Lev-Ari and Kailath, (1986)) that efficient triangular

factorization of R is possible if there exists a matrix function 0(z) that satisfies the

matrix equation

E(z)JE*(w) = J - d(z,w) JMJ (6a)
d(z,O)d(O,w)

where

M := G*(O)R-(o,O)G(O) = M* (6b)

We have also shown that (6) has a solution if, and only if,

d(z,w) = A(z)JTA*(w) (7)

which is the generating function version of (2). The (nonunique) solution of (6) is

0(z) = I- d(z,,) JMiU (8a)
I d(z,O)d(O,T) M

where U is any constant matrix such that

UJU* =1 (8b)

and 't is any complex constant such that

-.-. , -,.-. ,.. ,i,, -. .,-,-. . . : - , .. . ...- -- ,, ._ ,.. : : _,,,. ..-.- '-''':''.1"''..'"......-.. '.:.: :': : .'' '.,;.'_, _*.€.:. - . . .4/ ".":"." " -'-'" '":"..'.'.,. ",..,'*.'.."*"*""" . . . """ " "
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d(T,t) = 0 (8c)

The fictorization of R is obtained via the recursion

Gi+l(z) = Gi(z)@i(z) i = 0,1,2,... (9)

where E®(z) have the form (8). This algorithm requires O(n2 ) computations to

factor a structured nxn matrix, in contrast to the conventional LDL* algorithm

which requires O(n3 ) operations to factor an arbitrary matrix.

The generalization of the displacement concept has opened several new avenues

of research, which we are currently pursuing. We have found that a family of so-

called Bezoutian matrices arising in the theory of resultants of polynomials, with

applications to topics such as testing for coprimeness, root distribution, compensator

design, etc., also has a displacement structure. Moreover, this connection has

suggested a new geometric interpretation for the displacement function d(z,w). Since

d(z,z) is real for all z, we can define a partition of the complex plane into three

mutually exclusive sets, viz.,

+= {z ; d(z,z) > 0}

0 z ; d(z,z) = 01 (10)

KI_:={z; d(z,z) < 01

Notice that the curve 0 is the boundary of the domains Q, K. While the original

displacement concept turns out to be associated with the unit circle T, and the Ilankel

displacement is associated with the real line R, other curves may also be considered.

This observation has also revealed a surprising connection with the theory of

orthogonal polynomials on arbitrary plane curves.
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On the fundamental theoretical level we made connections with the work of L.

De Branges, H. Dym and P. Dewilde on reproducing kernel Hilbert spaces associated

with plane curves. The link connecting this topic with the work of Soviet

mathematicians (Livsic, Brodskii, Krein, Potapov) on operator colligations and J-

unitary operators appears to be the concept of systems (operators) that are J-lossle,s

with request to a curve. This concept underlies our work on factorization and cascade

filter synthesis, as well as the very recent work of Prabhakara-Rao and Dewilde (1984)

on state space models for such systems. In fact, our equation (6) implies that E(z) is

J-lossless, i.e.,

E(z)JE(z) <J z E Q+

e(z)J6*(z) =J z E 2O (11)

0(z)JO*(z) J ZE Q_

It is interesting to notice that Prabhakara-Rao and Dewilde start with (11) and show

that any finite-state solution of (I) must essentially have the form (8).

. .-
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the rx)lknomials ~J(~~:}which are obtained from {a,,(z),b,,(z)} via

bV(z) (16)

Q, ~ ~ .cahiz factor.

rv .of t14) w,%ith (15) shows that while the number of multiplications

.... hs the transformation (13), the number of additions has, in fact,

* :~.: itm7! ,u, :hat the increase in the number of additions can be avoided by

.t.t- t.'rrn recursion (15), which involves both f,,(z) and g,,(z) into a

Sinvolving only one of these the polynomials. The three-term

ha,, the form

__________ - (1- k)fi(Z)} (17)
y,( I -k,.)Vn

~:. .rrc irNion for i~n(z)

A s:Techoice of the scaling factors Wn, leaves only one nontrivial coefficient

im this rcxLursjion. Since this can be done only in three ways, there are three

,utat 1W1,11 -efficient forms of the recursion (17), namely,

6,1(Z+l)f"jZ) - zf,, 1(z)

(:+lf~() -zfn-l(z)

The conventional formulation of the Levinson recursion (14) can be related to

ti~t;~nisio-1iMe mordels (see, e.g., Kailath and Lev-Ari, (1984) and lBruckstein and
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Kailath (SIAM Review, accepted, 1986/7)). In particular, the ratio b,(z)/a,(z) can be

interpreted as the scattering function of a transmission line consisting of a cascade of

(uniform) sections with different characteristic impedances. On the other hand the .

ratio gn(z)/f,(z) can be interpreted as the impedance (or admittance) function of the

same transmission line. For this reason we shall say that the original recursion (i4) is

expressed in the scattering domain, whereas the transformed recursions (15) or (17)

are expressed in the immitance domaint We first derived immitance domain

algorithms as inverse scattering procedures for discrete transmission-line models in

Bruckstein and Kailath, SIAM Review, 1986/7, however we were not interested there

in computational complexity issues and did not recognize the reduction in operation

counts.

The immitance-domain version of the Levinson algorithm is also useful in the

efficient solution of problems involving the so-called singular predictor polynomials

(Delsarte, Genin, Kamp and Van Dooren, (1982)), such as Pisarenko's harmonic

retrieval technique.

Bezoutians

Bezoutians are structured matrices B whose generating function has the form

B(z,w) = p(z)[q"(w)J* - q(z)[p#(w)1' (19)
[1 z]Ja[1 w]*

where In{Jad = {1,1}, p(z),q(z) are arbitrary complex polynomials, and the sharp

(#) denotes a suitably defined polynomial transformation that reflects the zeros of a

polynomial with respect to the circle 00 defined by d(z,w)= [I zlJ[ I wI°. In

tBode (1945) coined the term mmance to denote both impedance and admltance

e -*_ ~
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work in progress, we have shown that the square matrix B whose size equals

max{deg p,deg q} has a rank deficiency equal to the degree of the greatest common

divisor (divisor) of p(z)q(z), and that our factorization procedure efficiently computes .

this ge'd. Moreover, since Jd can be selected in many ways, we have a large variety

of procedures at our disposal, with different computational requirements and numerical

behavior. In addition, we can apply equivalence transformations of the form

[p(z) q(z)J - [p(z) q(z)]T - ' to further modify our factorization procedure. For

instance, we can use the transformation •

to obtain the expression

B(z,w) = j b(z)1a#(w)I* - a(z)Ib(w)l" (20)[I ZIJa.W w l

where a(z),b(z) are arbitrary complex polynomials. Finally, we can transform the

two-term factorization recursions into a three-term form and examine the complexity

and numerical robustness of the resulting procedures.

When we make the specific choice q(z) = p #(z) in (19) the Bezoutian becomes

thermitian. In that case, it is known that the inertia of B serves to locate the zeros of

the complex polynomials p(z) with respect to the curve C0. We have a new simple

proof of that result; moreover, our previously mentioned fast factorization procedures.

both in two-term and in three-term form, can efficiently establish the inertia of B. We

have gained some insight into the problem of singularity (i.e., singular leading minors

in B) and shown how to avoid it in three-term recursions. We intend to apply this

'ft
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concept to study the occurrence of the singularities in two-term recursions and to

devise a simple cure to this problem.

Symmetric polynomials play a central role in the theory of Bezoutians. These are

polynomials for which po(z) = p(z). If we restrict a(z) and b(z) in (20) to be

symmetric the Bezoutian becomes Hermitian, and consequently the computational

requirements of its factorization procedure reduce by a factor of 2. Thus the gcd of

two symmetric polynomials can be computed with half the number of computations

required for arbitrary complex polynomials. In particular, if we choose Jd = JR in

(20), the polynomials a(z), b(z) must have real coefficients and the corresponding

factorization procedure coincides with the partial realization algorithm of Kalman. We

intend to exploit this observation to examine in detail the possibility of constructing

computationally-improved alternatives to the known partial realization algorithm.

Another fascinating observation relates Bezoutians to measures defined in circles.

We have shown that the inverse of a positive definite Bezoutian is the moment matrix

of a positive measure defined on the same circle as the Bezoutian. This observation

provides a key to the extension of the notion of Bezoutians to curves other than

circles, which we intend to study in the future.

QR Factorization

The factorization of a matrix into a product QR where Q is an orthogonal

matrix and R is upper triangular is a key step in the eigenanalysis of this matrix. It

is also instrumental in the solution of linear systems of equations involving matrices

tha.t are not strongly regular. Recently Cybenko (1985) has proposed a method for

Computing the singular value decomposition of a matrix via QR factorization.

A%
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QR factorization of a matrix A is closely connected with the triangular

factorization of A*A since

A*A = R*Q*QR = R*R

which proves that R* is the (unique) lower-triangular factor of A*A. Thus QR

factorization can be efficiently carried out if A*A has a displacement structure. We

have shown, in fact, that if

rank(A - ZAZ*) =a

then

rank(A*A - ZA*AZ*) < 2a + 1

so that the displacement structure for A is inherited by the product A*A (Chun,

Kailath and Lev-Ari, (1986)). Moreover, we have shown how to construct a generator

of A*A when a generator for A is known. Once as generator of A*A has been

computed the QR factorization of A is obtained in O(an2) operations where a is

the displacement rank of A.

Our previous work in this area has focused on the Toplitz-oriented notion of

displacement, i.e., on the displacement function d(z,w) = 1 - zw*. This enabled us to

derive procedures for fast QR factorization of Toeplitz and close to Toeplitz matrices.

We intend to extend the same ideas to other displacement functions in order to

broaden the scope of applicability of our fast QR factorization procedures, e.g., to

Hankel and Vandermonde matrices.

In another direction we intend to examine the applicability of equivalence

transformations and three-term recursions to further reduce the computational

A .A .'.-.. '-,,& ' ,. .... -. .. . -. ,.-* - ...... ,\
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complexity of our QR factorization procedure.

Connection to Inverse Scattering Theory

Connections between scattering theory and the displacement structure of covariance

matrices was a topic that received much attention during the past few years. It was

discovered that there are natural mappings between transmission-line structures, and

other wave-propagation models, and the structure of fast algorithms for factoring or

inverting covariance matrices with displacement structures. These results are described

in papers by Kailath, Bruckstein and Morgan (1986) on fast factorization via
p

transmission-line models and Kailath and Lev-Ari (1985) on mappings between

covariances and physical systems. It turned out as a result of this research that the "

factorization algorithms are in fact solving inverse scattering problems, problems that

require the recovery of layered, one-dimensional, scattering medium properties from its

response to a probing input. The input-response pairs are the scattering data from

which the parameters of the layered medium have to be determined. It turns out that

the most straightforward approach to inverse scattering problems is based on a careful

analysis of the causal wave-propagation, combined with the local properties of the

scattering medium. This approach led to the development of a unified theory of inverse

scattering, based on difference, or, in the continuous case, on differential equations.

Several interesting results in inverse scattering theory are discussed in the papers by

Bruckstein, Levy and Kailath (1985), Bruckstein and Kailath (accepted to SIAM

Review, 1986/7). The results encompass several differential algorithms that were

discovered by various researchers working in different fields such as, geophysics,

"" , ,r,".",J-".". - % . ,".". .• T ",",.," •.•. . . . .."""". ..". ..".".". .".."" "4 ""' " °" 4" """-"" 4-3"-_7.'-
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distributed systems and transmission-line synthesis, speech research connected to

pressure-wave propagation in acoustic tubes, mathematics and mathematical physics.

The classical theory of inverse scattering, which starts from the physical problem

of determining potentials from quantum scattering experiments, was however based on

solving nested sets of integral equations (associated to the names of Gelfand-Levitan,

Marchenko, Krein and Gopinath-Sondhi) rather than propagating differential

algorithms. The connections between these approaches also became clear during this

research, and led to the realization that when the structure of the matrix/integral

equations is exploited i.e., when the so-called fast algorithms for solving

matrix/integral equations having Toepliz, Hankel or Toeplitz+Hankel structures are

used, we obtain difference/differential methods that closely resemble the direct

differential methods that exploit the structure of the scattering medium directly. The

algorithms are similar, however, not identical, and this was an important point to see.

It was then observed that the fast algorithms derived in conjunction with integral

equations-based methods for inverse scattering also exploit implicitly the medium

structure, however in a different way: while the differential methods use "layer-

peeling", i.e. they identify the next layer of the medium and then propagate the

signals through it to synthesize scattering data for the medium portion starting one

layer deeper, the fast algorithms for integral equations use the same scattering data and

propagate it through the entire portion of medium that is already recovered. So, the

information for identifying the next medium layer is gotten by propagating the original

scattering data through the already identified portion of the scattering medium and

when the next medium layer is identified it is adjoined to the already known medium i

section. For this reason we call the fast integral equations-bascd algorithms "ti\er

42%
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adjoining" algorithms. The above-described alternatives for doing inverse scattering,

i.e. layer-peeling and layer-adjoining turned out to be quite general processes that can

be applied to a variety of problems. In fact we recognized that the classical problem of

partial realization theory falls very nicely in this scattering framework, and the above

inversion alternatives readily yield a unified picture of the algorithmic alternatives one

has in solving this problem (see Bruckstein and Kailath, accepted ASSP Magazine

paper, 1986/7).

Computationally, the layer-peeling and adjoining algorithms have the same

complexity counts (O(N 2)); however the layer adjoining methods require the

computation of inner-products (to propagate the original scattering data through the

already identified layers). An inner product is a computational bottleneck in parallel

implementations since a long addition requires O(IogN) time, even with N processors.

The layer-peeling algorithms, which avoid explicit computations of inner products by

propagating the scattering data through each identified layer, are more suitable for

parallel implementations.

Direction Finding, Signal Resolution and Covariance Structures

Another avenue of research during the period of our contract was the use of covariance

structures in processing signals received by an array of detectors. The basic results in

this direction concentrated first on applying an algorithm of R. Scmidt, called Multiple

Signal Characterization or MU'SIC. developed in the context of' direction finding with

antenna arras, to spatio-temporal spectral an,lsi, (Wax, Shan and K,ilath, 1984) and

to a s,,ealth of signal resolution ptohleis (Bruckstcin , Shan and Kailla h. 1985. and the
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thesis of M. Wax). Several important results were also obtained on the basic direction

finding problem (the paper Optimum Localization of Multiple Sources in Passive

Arrays, by Wax and Kailath, was awarded the senior paper award of the ASSP Society

of the IEEE), on dealing with coherent sources, often arising in multipath situations,

see. e.g. Shan, Wax and Kailath (1985), and on the determination of number of

sources by information theoretic criteria (Wax and Kailath, 1985).

Jill r P .
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